" AD=AG98 069 MARYLAND UNIV COLLEGE PARK DEPT OF COMPUTER SCIENCE F/6 972

ASSERTION MECHANISMS IN PROGRAMMING LANGUAGES, (U)
NOV 79 M V ZELKOWITZ» J R LYLE F49620~80- 0001
UNCLASSIFIED AFOSR=TR-81-0365

END
,ﬂ’.‘.,.n
5-81
_ome

COMPUTER SCIENCE ’
TECHNICAL REPORT SERIES

DTIC
ELECTE
gm 2 3 1981 3

UNIVERSITY OF MARYLAND

COLLEGE PARK, MARYLAND
20742

&
8
=
Lok

Approved for puhlie re

81 4 “22-w{rdd

..‘ aa

=51
=
N

¥
&

TR=-235 November 1979

Assertion Yechanisms
in
Programming Languages

James Ra. Lyle
Marvin V., Zelkowit2 : 4

Department of Computer Science
University ot Maryland ,
College Park, Maryland 20742

8

i

!

e e et svepen g pe . N , . I

AL FORCK CUOTTE N SCISNTLFIC RRSEARCH (AFSC) !4
Moo A IR A SR T | !
PSR S [I AR ’V
Tt Lwea et o aovochewed and is "
Goreve oy C o w e W APR 1Ju=l2 (7). \
cotv lods s e andted, ;
aA. D, “i’..' < '

Technica: iutorantion Officor

The work reported here was supported by a grant from the
Air Force Oftice of Scientific Research b.

Computer time was provided in part by the Computer “cience

Sy ghot0 -F0-€-000!

o v e 0 T b

L UNCTALGIFLED

SECYURIYY Qfsumrumu oL T»w’ K"AI,L Chhen intn Frtered

B R B ML

L 4 i 1ALV IN
~ 17 REPORT DOCUMENTATION PAGE AT
] * T; GOVY A CLUTINN RO 1 S T A A _r‘:“r'_'"._+
f
, TR-81 - aa 65 - w/wc
= TITl E (and Subtitle) - Y"JL‘ T '\Lwi . -~
. N ST . er Ry a g ra e Ao ‘_ '
ASSERTION MECHANISMS TN PROGRAMMITG [TALGUAGES N ‘
C, 2 = ~ o | £ _Z?“/é?//ﬂ v - 1,/
~ - t?hc "l NSV TON “hpm't i a1
3 AUTHORE»Y \ T T O A ey L E
s WMarvin V. jZelkowitz amd James R.. Lyie /f/'\lw‘ 3 V‘—n& 410
. <y
[———- | ,
9 FPERFORMING ORSANIZATINN NAME AND ADDRESS I '
Dopartment of Computer Scicences A
University of Marviand 1
College Park MD 20742 1/ o L
't cmnnox_uuf QFFITE HAME AND ADDRESS }‘Z ol EESIRA &
Alr Force Office of Scientific Rescarch/:M /J I S il 34 . b
Bolling AFB DO 20332 - L (e N A }5 P -
R
- —_—— --————l—~--97;- — - e v e LT } 1
T4 MNIONITORING AGESTY SAME A ARTRESSAOS tflerent from Contendlin gy Offver: , oSt v e e . 3
]]
POUNGASSTFTED | i 1
! LSS S - ’
¥
- - — — -— - - 1
16 DISTRIBUTION STATEWMENT af this Keparn
Approved for public release: distribution unlimitad. I
I
£
1
)
e - e .
17 DIATRIOUT LN, STATEMENT (af the antteant smtrrad tn (1« b 20 L diitrrons to o iteg o H
'
b
i
!
-‘ﬂ—_y_ll’:h;»’MEHYARy MOYTE S TorTTm e T - B g
!
i
o
T W T e R T T ST e T T T P
%’T“v T N T IR T SN A
Assertions typically are veed toovorily progomam behovioa, ibae oy TR
of ar assertion 1o canse a4 -t ime exception can have practioal bt
We take this view that an exception is such an acertion taibse, he
implementation of assevtions in a PL/T compiler is decovibed, et th
interface with the exception mechanism of PLAT (ON—tmit -1 § 0 Goaey b,
Principle usapes include: test data set cvaluation and extension of the
drmiin of abstract data type specifications,
AN)
[al iy
DD [NV TERE]]473 “IN‘I 1‘””“
o ‘4‘ ¥ "‘“”ll“\ L l\ rer AR ‘e
.'.--- R
70‘,,4. "‘T"‘_."\n_.:_. S o R L T v 4”]’
-

Assertion lecnanisms in Prggramming Languages

Assertions typically are used to verify program behavior.
However, the use of an assertion to cause a run-time exception can
have practical benifits. We take this view that an exception is
such an assertion failure.

The implementation of assertions in a PL/I compiler s
described, and the interface with the exception mechanism of PL/I
(ON=-units) is described. Principle usages include: test data set
evaluation and extension of the domain of abstract data type

specifications.

Accession For

NTIS GRaZl AL

DTIC TAB £
Unannouniced !
Justification]

R
'Au1stribution/ _
Avallability Codes
o ‘Avail anid/or

List | Spccial

A

PRy

Tarle 3¢ Contents
INtroduction « o o o o o o o
Survey of Existing Languages
2ele ExCEeLtiONsS o o o o o o
Calalea PL/L o o o o o o o &
2ele2e Ad3 o o o o o o o o o
2elele GYPSY o o o o o o s o
2elebs Pascal,Euclid ana ZENO
2ele ASSErtions « o o o o o
Celele Pascal o o o o o o
29262¢ ADA 4 o o o & o o o o
2elede Euclid 4 & o ¢ o o o
Celebe ZENC o o o o o o o @
CeZe5e GYPSY ¢ o o o o o o o
2e2eCe PL/ICS ¢ o o o o o o o
Assertions in PLACES o o o o

FISURE 3-1

2.5,
Figure I-o
Fijure X-2

!.7.

an Example

« Namec Assertions

Execution Summary

invariant assertions

vasic ASSERT statement

PLACES Structure

.

tnnhancements Uncer studgy

ONASSERT butltin function

.

L

2utput from ®rogram “UL

PLACES Progras «4ith Assertions

13

11

12

13
14
15
15
14
17

17

v oy -....-.A._,_<_.~._
it s e bttt i

Taole ot {cntents

Using Assertions in Programs « « o o o

Lel1se Provide Information to a Compiler

bel2e Program Testing o« o« o o

4.2+ Pre and Post Condgitions

£.2+2. Invariant Assertions

G.2.3. Test Data Evaluation o« o

Figure «=1 Usin,; Assertioas in Path

4=¢ “onitoring Path Selection

exceptions Viewed as Assertions
Data Type Specifications

References o« e o o o s o o o o o o &

e Pe— T ¥ &3t % 1

fusertiun cCrenism™s in Fro_ranming Lanjuayes

Assertions, relatively new program constructs developed as
part of research in program verification, typically are wused to
verity oprojram bDehavior. They allow a programmer to make
statements about what ought to be true at a point in program
execution,

The languagje designer has several options when considering
the semanti¢cs of an assertign mechanism. Originally they were
considerec ¢preaicates for a theorem prover to (necessarily)
vertify, but had no impact upon the computation process. This s
compatible with the Hoare axiomatic approach towards program
verttication [hoarel. Alternative views are that they indicate
conaitions to be tested during program execution or they could
indicate a ltemma (e.g. theorem, axiom, pre or post condition) to
oe oroven Ly the compiler. The failure of a run-time check causes
erecution to stopy and may raise an exception condition,

The Dbasic assumption in this current research is that
assertions are another form of program exception, rather than
simoly a "ou3"ese Many current languages include some form of
excection hangling, (e.g. OY=-units of PL/I). Or stated another
way, exceptions are simply o language defined assertion (e.g. an
extension to the "lecality assertion™ of guclic).

In the next section of this gpaper, several assertion and

excection mechanisms now under study are surveyed, while the

3erticn cecranisas in Trojramming Languages

University of taryland PLACES system assertion mechanism is
explained in secticn 3. Section 4 cdiscusses the goals and
acplications (e.g. test data evaluation and data type

scecification) of the PLACES mechanism and gives examples of how

to make use of the facilities witnin PLACES.

ServE, Lt L adistan, LLirguages

2. Syryey of Lxistinao Lanuyages

2els txceptions

This section summarizes briefly exception

tanjudjes with assertion mechanismse.

2elele PL/I

ixception handlers, called ON=units, are
dynamically with excegptionss & program executes an
which gynamically associates a given block with
exception. The block intercepts the exception as
block executing the TN statement is active.

it compile time it is gyenerally impossible to i3
haniler (there can be as many 3as the programmer wishe
s active at the time an exception OCCurse. The envir
Onu=unit is nested within that of the signaling block
in the form of puiltin tunction calls, are available
more information about the exception (e.9e ONSOURCE).
returns to the point where the exception was signalied

Zu=unit is terminate’ by a o010,

handling in

associated
ON statement
a certain

long as the

entify which
s to write)
ocnment of the
. Facilites
to provide
The ON-unit

unless the

The new Department of pDefense language [Adal, contains an
exception mechanism. Each block or program body may have an
exception hanaler s¢catically attached as an exit to a blockes Wwhen
an exception is raised the current olock is terminated and control
passes to the appropriate hangler. I1f no handler is specified the
exceptiygn 13 propagated outward to the invoking program unit
(calliny program or enclosing block), Unlike PL/I, <control
returns to the point of call after the &exception has been

orocessed.

2e1.3. Gypsy

Lxceptions, catled congition clauses in Gypsy L[Allenl, are
similar to the Ada design, with condition <c¢lauses statically
attached to blockse. when a condition is raised, the obplock is

terninated and the condition is processed.

Celeb, FascalyZuclid ana ZEND

“2 exceg tion rancdlin; facilities are included in these
tanjuazesy although some dialects have imzlemented some exception

ca;ability.

2ele Assertions

This section presents a drief descripgtion of the assertion
mechanism ot several typical designs. The mechanisms range from
the eloborate interactive theorem prover of GYPSY to a simple
run-time check (to be) generated oy Ada compilers.

“ost assertions are based upon axiomatic program verification
(“oarel., it P anu G are predicates and S is a statement, then

{p}» s (@}
states that if P is true (pre condition) and S is executed, then G
is true (post congition). The axiom determines what pre and post
conlditicns are allowec.

In programs, these are usually written:

ASSERT P;
S;
ASSERT @Q;
Crijinally a verifier, if given tne above needs to prove (P} S (3}
as 3 theorem. Such proofs are Jdifficult and often impossiblee.
Thus run-time checking was prooosed as an alternative in several
lanjuagzese. Note that this is essentially a test of an instance of

a variacle, while the more formnal proof is a verificatian for all

possicle Sata.

2elels Pascal

The original specification of Pascal does not include
assertions, hcwever recent implementations such as [Hansenl Texas
Instrunents 92 minicomputer has extended Pascal to include them,
Most ut the recent languages (es3s Euclidy GYPSY, Ada) are

derivaties of Pascal, and do contain some assertion mechanism,

2e2e2es ADA

Ada includes an ASSERT statement, a boolean expression which

must pe true when the ASSERT is encountered at run—-time. 1f the]

esoression is false an ASSERT_ERROR exception is raised.

2;:.5. cuclid Y

cuclid is a systems programming language derived from Pascal
witn reliability ana wverifiapility as the main Jdesign goalse.

Assertions are incluoced to provide useful documentation of progranm

td

specifications ano to assist in program verification [Popek]., 1¢ * 4

an assertion cannot %e proven at comcile time a run-time check is
claceg 1n the oQuject code by the compiler, Al Euclid programs

are exnectel t¢ Te veritied, s2 the failure of a run-time check 1is

PURE PV Y VT,

a fatel error that stops the pgrograms

The tuclid compiler is exdected to pass legality assertions,

con3iticns which must be true tor a projram to oe lejal fuclid, to

Tarvy LY Cars [A T VR EL Y

trhe verifier whenever the compiler cannot fully check that some

CORStraint ingosed Dy the Llanguage s satisfied, LLegality
assertions are source level assertions that can be inserted by the
progjrammer Or outomatically by the compiler that must be true
tased upon the source program, for example, for array references,
le:ality assertions csn be nqgenerated that the array ingex is

within the 3rray DOURCS.

2elebe JEND

v o lanjuage strongly based on fuclia, is psing designegs
for research in coge optimization ang distributed computing '1
(-attl. The assertion mechanism in 2ENG altows specifications

atcut «hat is true at a point in program execution (called point

assertions) and about what 1s invariant over 3 rlock of code

Foint assertions evaluate a boolean expression. If the
exgression is true execution continues, otherwise the program

StUDSe The ccmpiler is expected to try to infer the truth of the

expression from flow analysis; a run-time check is generated if .

- — e

the aralysis cannct orove the result. |

.nager assertions allow invariants to be placed on blocks of
cndes A tlcex Labpeled with an unger assertion witl behave as if
there is 4 point assertion vefore each statement in tne tlock and

atter the Last state~ent of the Hlocke. tUnder assertions normally

aroly to all inner clcexs but 2 relax clause ¢an pe added to an

-

Turve, Lt _axistin. Lanjutie.

inner dlock tc release the inner block from conforming to the

under assertion,

2+.2¢5¢ GYPSY

The grime design goal of GYPSY was an integrated
specification and orogramming language (Atlenl. The assertion
mecnanismn of SGYPJY is wused to express program specifications.
cr.ecifications can be placed on type parameters (REGUIRE),
statemnents (ASSERT) and routines (ENTRY, BLOCK and ExlIT), The
orogranmer can reguest that the compiler prove or assume any
specification. The compiler can also be directed to include a
run-time check of the specification, Failure of the run-time

check raises an exception.

Celdebs PL/CS

PL/CS is a version of PL/1 developed at (ornell University

which "enforces some ot the igeas which have come to be regarded

as 30¢ miny pragtice” (Conwayl. The PL/CS assertion

"wa

gregram
mechanism includes an ASSERT voolean expression with two
variations.

The FOR SOME variation attaches a DO group to the assertion,
The exoression must evaluate t2 “true"™ for at least sne value of

the index variavle. For example, Suppose we wish to assert that

scme element of the array ¥ of gimension N is greater than 2zeroe.

B e TS S—— Caa

e wouly write:
ASSERT (X(1) > 2) FOR SOME I = 1 YO N;
The FoR ALL wvariation s similar, however, the boolean
exgcression must te true for all values of the index variable.
tThe »L/C. assertion mechanism is intended to Dpe used as a

testin) aigc, the assertions can oe turned off by <compiler option

tor procguction runs.

A

—

The PLACES project (Programming Language ang Construct
Evaluation System) is a research project of the University of
*»arylanage. By wusiny the PLUM Lload and go PL/T compiler
{Zelkowitz a3 as a basis, the compiler has been extended to
integrate assertions within the exception hanaling capability
(ieee IN-units) of PL/I.

The mocel peing implemented is a merger of verification and
testingy strategies. Simitar to Euclid, the programmer sprinkles
the <code with assertionss. A verifier tries to prove the
assertions. [f so, then the assertion can effectively be deletea
{Fijure 3=13. If not, then the assertion remains as a run-time
check. Ditferences from <tuclid include, the failure of the
run-time check te invoke an exception handier, allowing the

prosrammer to take some action other than stopping the program,

FIGJRE 3-1 PLACLS Structure

e et - L a4 P e
!] | | 1 !
! lASSERTIINS | CANNOT | GENERATE |
| PLACES |sem—ace==d>{ VeRIFIEKR |====e===>] RUN-TIME |
} i { | PROVE [CHECK !
({] | ! |
L * Prmcm o - --—-—- + (Y P R L X

|

| CAam

IPROVE toomcoco et

| l

{ TRUE | DELETE

|
|
$omemcmcecocace>] ASSERTION |
| | |

| |
*

e cca-

|
|
i
|
l P T L X
|
l
+

1
FALSE 1 PRINT |
e ERROR |
| MESSAGE !
| I
drmenm e caa=y
In many applications, orogyrams cannot be oproven, For

exanple, given the seguence:

the courrectness ¢t the program may depend upon the value ot £

which cannot te known until run=time. A pertect system (which we

00 not claim to ve producing) would reduce all assertions to the

tollowing one:

ASSERY (P(X));
where P(x) is the precicate that "X has the properity that ensures
the ¢correctness of the program". Thys the correctness of a
crojran run Jdepenas or one specific run-time check. In the
exanple of Fijure 3-2 the assertions at lines 2¢~23 and 29 can te
croven (see [casili1]) anu hence Jeleted, what remains is P(X),
where X is the vector [A,3] and P(x) is (A 2 3 &§ 8 2 0.

3,1, Lasic ASSERT statement

The basic ASSERY in PLACES has the form:
ASSERT (<boolean expression>);
shict senerates a run—-time test equivaelent to:
IF NOT (<boolean expression>; THEN SIGNAL ASSERTFAIL,;

In 2tner worgs, it the Lbtoolean expression is "true" execution
ccntinues, otherwise the ASSERTFAIL congition is raised,
A_SERTFAIL was a.ced as a new conadition which can be invoked. Thus
the user can mwrite:

O% ASSERTFAIL oEGIN o » o END;

Exanples ct FLACES assertions:

ASSERT (R),; /+ VALILID CANLY IF A IS DECULARED BIT =y

This is similar to other run-time assertion systems.

Jele Invariant assertions

Ctten it is gesiraple to have an assertion hold over a olock
ot coce. FLACES hancles this via an invariant assertiogn of the
tcrm:

ASSERT (<boolean expression>) INVARIANT,
Similar to IENT, an invariant assertion generates a test of the
exgression tefore each statement at the same scope level in the
remainier of the current olocks The expression 1is also tested
atter the last statement in the block., It should be noted that
while the invariant is checked vefore entry to ana after exit from
3 block nested within the current scope, the invariant, unlike

ZEND, is not checked within an inner block unless it is explicitly

stated.

f$+3s .ameg Assertions

PLACES assertions are non-executatle statements in that they
carnot Le labeleo or retfterenced by a GFrTD statement and have no
sice efftects. hnowever, it 1s sometimes desirable to refer to o
stecific assertion. To this ena assertions c¢an be nared. The
syntax 1s as follcws:

L2S:RY {<name>) (<Ktoolean expression>) (INVARIANT);

9

I
|
i
|
i
I

tLsertigns an NS

where the items in brackets (<name> and INVARIANT) are optional,

and <name> refers to any lejal PL/I identifier.

3ebe CVASSERT builtin function

Liven several assertions 4ithin a program, if a user writes
an ASSERTFAIL CN=-unit, the dbility to determine which assertion
tailed is needeq. In orgcer t> do this, the ONASSERT builtin
tunction was audeds ONASSERT returns a character string which is
the name of the assertion which raised the exception. 1t the
tailed assertion was not nawed the statement number of the
assertion is returneyJ.

vse of named assertions and QONASSERT leads to a model of an

ON=unit that nas practical applicationse. for example, an

ASSERTFAIL CON-unit could have the structure:

ON ASSESTFAIL BEGIN;

DO CAS5E (CNASSERT);
\LABELTI N DU; o o o END;
\LABEL2TN DU; o o o END;

END; /* E%ND CASE e/

END; /* E%D ON=UNIT «/

This h3s 3 sematic structure similar to:

CN ASSERTFAIL EEGIN,;
«HEN MASELTY DO, o o o END;
AHE \NLASTL2N DO, e o o tND,;
.

thu,

This structure 1s Juite similar to CYPSY and ADa,

leSe trxecution Summary

~hen a FLACES program terninates a summary is printed giving
tur each assertion the number 0of executions and the numper of

tailures.

lyte An Example

The program in fFigure 5=, auapted from [oasili]l multiplies
t«0 numnoers by repeated audition. The ASSERT statements are
oresent at lLines 12, 22-23 ang 29. The assertion at {ines 22-23
is 3n example of gn invariant. Tne expression 1is tested after
eacn statement in the remainder ot the enclosing plocke That iS,

the invariant is checked after each statement between lines 23 and

~s
.

1t any of the assertions fail the ON-unit in lines & to 17 is
invoked., This UlN=-unit prints a message identifing tre failed
assertion ang the statement where the failure occured. it the
assertions at lines 1* or 29 fail ONASSERT returns the statement
nuwoer ot the A3S¢RT, which is 12 or 22 respectively. However if
the ALSERT at (ines (C2=27! failsy ONASSERT returns LOOP_INVARIANT

since tne assertion is nameyd,

e

SlsertA

ons 1

Figure 3-2

PLUW S
1 1

2 2

1 2

L k ¢

s 3

6 4

? o

€ 45

G 5
" 5
11 4
12 b
1z %
14 3
15 13
16 11
1?7 11
12 12
1ty 12
2T 16
21 1%
22 1%
P S Y
24 17
cs 1%
<& 19
7?0 e
2¢ 21
29 22
LAOTEN.
B 23
1 z
g
6 5
e s
s 27
W AENT NG
wASYING
AACNING
aARNT NS
covp Lt

n

PLACES Program with Assertions

<Plactes Praojegt> 10731779
YUL:PROCEDURE CPTIONS (MAIN);

10:12:46

DECLARE (A,8,7,2);
DECLARE MORE_INPUT BIT (1) INIT (7178);
O ENDFILE (SYSIN) MORE_INPUT = 7073,

ON ASSERTFAIL PYT SKIP EDL1T (
“ASSERTION “,ONASSERT,”
CA,A A LF(3));

PUT SKIP LIST (ENTER A AND B”);
GET LIST (a,B);
33 wHILE (MORE_INPUT);

PUT SKIP 0ATA (A,B);

/*COMPUTE 2 := A*8 BY ADDITION =/
ASSERT (A >= (5 » 8 >= N);

2 = 0;

Y = B;

3ECIN;

ASSERT LOOP_INVARIANT

(Z = A»(pg=Y) § Y >=
D0 wHILE (Y>7);
Y =Y - 1;
I =2 2 + A;
END;
END,
ASSERY (1 = AwB);
PUT SKIP EDIT (A," » “,5,7 = ",2)

CFUI) WA F(3) A, Fl0));

PUT SKIP LIST (“ENYER A AND 37);
SET LIST (A,3);
£}
KD OTPOUL
ASSERTFAIL
ONASSERT
NS TMTY
ASSERT

[g
- .

is non=-stanagard PL/Y
is non-standard S /1
is non=-stancard PL/1Y

is non-stangcard PL/Y
MSEC.

VA A A M

[P AR AN o)

v

FAILED AT :" ,ONSTMT)

0) INVARIANT;

Assertivns in T a0D 0

Figure 3-3 QOutput from Progran “MulL

ENTER A AND B

A= < 2= 3; i

ASSERTION LOCP_INVARIANT FAILED AT: 1§

ASSERTION LOOP _INVARIANT FAILED AT: 19
ASSLRTION LOOP_INVARIANT FAItFD AT: 179
2w 3 o= o
ENTeR A AND B
A= z 3= 5,
ASSERTION LOOP _INVARIANT FAILED AT: 19
ASSLRTION LOOP _INVARIANT FAJLED AT: 19
ASSERTICGN LOOP_INVARIANT FAILED AT: 16
ASSERTION LOOP _INVARIANT FAILED AT: 19

ASSERTION LOOP _INVARIANT FALILED AT: 19

T o S = 40 X
gEx 23 Normal exit
ASSERTION SUMYARY: !
STMT 2 EXECUTICONS FAILURES *
12 2
15 INV 12 g
<o 2
EXECUTION TIYE 1313 MS¢(C,

3.7« tnhancements ‘Inder stuuy

~Jdgitional teatures to PLACES are still unuer study, however,

since tney can be sinulated relatively easily within the current

~ssertions ir TLALES

structure, the implementation has been postponed.
After evaluation these features may be added to the language:
1) Initial values. 35X corresponds to the initial
value of X on entry to a3 block.
X can ontly be tested within an ASSERT statement, Now
the programmer can simoly declare a wvariable and
inititize it in order to simulate this,

2) F3R ALL and FOR SOME. These constraints (Like

in PL/CS) are also wveing considereas. They c¢an be
simulated as function calls within expressions in ASSERT

statement s,

-a

Using; tsserticrs in roifams

4. ysing Assertions in Programs

4.1, Provide Information to a Compiler

Assertions can be used to write specifications which a
compiler tries to prove. 7Tnis has not been very fruitful 1in
general pecause of the difficulty of writing good theorem provers,
However, many simple assertions and special cases can be checked

3t compile time with technigques such as data flow analysise.

Le.2e Frogram Testing

Assertions can be used in program testing to ve(ify pre and
post conditions and to monitor constant relationships ie€uy
invariants. Some general rules of thumb should be followed when
using assertions in program testing (some of which can be enforced
by the ccmpiler).

1) Assertions should not be referenced except by

some other component of the assertion mechanism such 3s

an ASSERTFAIL GN~-unit.

2) Assertions shoula be used so that they <can bpe

deactivated without changing the meaning or results of a

LSrozrams They should not be used to screen input for

valisity, for example.

Lsin, dsserticns In ro_rams

of course, these guidelines do not apply when assertions

use far some purpase other than testing.

4elele Pre ana Post Conditions

One method ot using Asgertions is as pre concitions or
congitions on logical groups of statementse. shen useg as 2

condition an assertion verifies that the previous statements

are

post

pre

have

executed correctily, i1s.e., it is @ post condition on the statements

already executedg.

L.2.2. Invariant Assertions

Another usage of assertions is to monitor & retltationship

among variables which must remain constant over a block of

statements. This can be done by an idnvariant assertion as in

lines 22-23 of Figure I-2. It should be pointed out
invariant assertions cannot in general be wused to specify
invariants in the Hoare sense since a loop invariant often

to nold within the body of a loop.

Lelele Test Data Evaluation

*ssertions can be used to help evaluate the thoroughness
test data set. “y placing assertions along each control path

assertiun summary of FLACES identifies ~hich paths have not

executede.

that
loop

fails

ot a
the

been

EEERAR. > TP KPPV

"s1n3 tsserticns in T rogr,ms

for example, in Figure &-1 the execution count of the
assertion ~HILE?1 is the number of times the while loop is reached
during execution. The failure count is the numper of times the
Loop 1s skipped. SO by examining the execution summary the
projraemmer knows 1t the test data set has exercised the Lloop or

skipped it or both,

Fisure 4=1 Using Assertions in Path Testing

ASSERT wHILE1 (A < B);
LOOP:DO WHILE (A < 5);

END;

Ot course, even if all paths of a program are executed by a
test set there can still be errors in the code [Goodenoughl., The
main thrust of program testing is to expose program errors. It is
believead that the more components of a program that are exercisecd
the Lower the chance of undetected errors. A careful selection of
assertions can provice more information than path testing alone.

In fFigure 4-¢ the assertions OR1, OR2 and OR3I indicate the
compination of conditions leading to execution of the THEN path of
1F1. IF1 is an example of monitoring a disjunction of two
expressions. An example of monitoring a conjunction of two

exgressions is presenteag in IF2.

b

tsserticns in ro.rams

Figure =2 Monitoring Path Selection

DECLARE GOT _HERE BIT INIT (°1°8);

IF1:1F (A > B OR € < D) THEN DO;
ASSERY ORT (A > 8 & C < D);
ASSERT QRrR2 (A > B
ASSERY GRI (C < D

);
);

e ND,;

tLSE D0,
ASSERT (GOT_HERE);
E!D;

IF2:1F (A > B % € < D) THEN DO,

ASSERT (GOT_HERE),
L]
END,

ELSc 00;
ASSERT (NOT (A > 5 OR € < D)),
ASSERT (NOT (A > ©8));
ASSERT (NOT (C < 0));

E"cD,'
4.3. Exceptions Viewed as Assertions

~e have peen viewing assertion failures as one out of several
classes of exceptional conditians, usually they are signifing an
incorect programe. However, this is in fact oackwards, other
exceptions are in reality assertion failures, Any lLanguage has

certain data type Constraints (eegse division is with a non=2zero

divisor), and violating those constraints raises an exception. we

“Psing fyscrticrs in Tro:raTs

believe that this is a more reasonable viewpointe. Consider, for
evanple, the statement] = J + K« when the programmer writes such
a statement she (or at Lleast the <compiler) has in mind the
assertign:
MIN_INTEGER < (J * K) AND (J + K) < MAX_INTEGER

where MIN_INTEGSER and MAX_INTESER are the smallest and largest
integers representable within the implementation., If this implied
assertion tails an overflow exception is raised. This sort of
implied assertion has been extended as the Legality assertion of
Euclid.

~ith this view we have more flexibility in thinking about,
designing and wusing an assertion mechanism, “e can have
assertions check for boundary conaitions and process these special
cases elsewhere in an exception handler., Cur <c¢ode 1is not
cluttered by the details of handling special <cases, as the

following section demonstrates.

bobe D3rta Type Specifications

In an earlier paper [Zelkowitz bl, an extension to PLUM has
peen Jescribed which implements abstract data types called
ENVIRONMENT variables, a form of pointer wvariable implementation
with protection against invalid usages., The model that was
imolemented has the following structure.s For a data type STACK

with ooerations PUSH and POP, the source c¢code implementing the

atrstruction woulac be:

Lsiny *sserticns in Tro,rans

STACK:A3STKACTION;
DECLARE 1 STACK,
STORAGE (1CQ)Y, /* STACK IS AN ARRAY »/
¢ CURRENT_PTR INIT (D),
2 SIZE INIT (100);

[%)

PUSH:FUNCTION (X,Y); /* PUSH Y ONTO X #/
DECLARE X ENV(STACK);
DECLARE Y;

END PUSH;
POP:FUNCTION (X); /+ POP X AND RETURN TOP VALUE =/

END POP;
END STACK;

A user of a stack woulag code:

DECLAFE X ENV (STACK);
CALL PUSH (X,1);
1

= POP(X);
and would only have access to the data type name STACK and the
operations PUSH and POP.
Assertions fill the role of specifications for this model.
For example, the PUSH operation could have the syntax:

PUSHIFUNCTION (X,Y);
ASSERT PUSH_FAIL (X.CURRENT_PTR < X.SIZ2E);

END PUSH;
Thus the implementation need not be concerned with inproper calls
on PUSH since the assertion ensures (either through a3 proot or a
run=time check) that the condition cannot arise. The full
imclementation of a STALX can then be coded as:
STACK:A3STRACTION;
ON_UNIT:PROCEDURE;
~HEN PUSH_FAIL BEGIN o o+ o END;
SHEN POP_FAIL BECIN o o o END;

Lsing “sserticns in “rojrans

END ON_UNIT;

L[]
PUSH:FUNCTION (X,Y);
ON ASSERTFAIL CALL ON_UNIT;
ASSERT PUSH_FAIL <expression>;
L] L] L]
END PUSH;
END STACK;
One 1implementation detail under consideration is to
automatically execute the statement:
OGN ASSERTFAIL CALL ON_UNIT;
on entry to the function, thus have exceptions handled
automatically. This leads to a practical system that has many of
the same characteristics as ALPHARD [Wulfl in a practical system.
The ON statement in procedure PUSH can automatically pe generated

if there is an exception block at the head of the proceagure. These

ideas are now under development.

Zssertiyn €Cranisas in “ro,rgnming Lan i uayes

Se

(M- ¥]

eferences

LACA) Cii Honeywell wull, ™"Preliminary Ada HKeference M™anual",
SIGPLAN NOTICESy vole 14, mngse 5, June 1979,

CAalilen] Allen L. AmbDler, Donald !. Good and Wilhelim Fo. 3urger,
*Report on the Language Gyosy"™, 1LSCA=-CMP-1, Institute for
Computing Science and Computer Applications, The UWUniversity of
Texas at Austin, August 1976,

Lualll) Jo Eo 3ally Jo Re LOw and Ge Jo williams, "Preliminary IENO
Languagze Description®™, SIGPLAN NOTICES, vol. 14, no, 9, pe 17=84,
Septemder 1979,

(3asilil) victor R, casili and Robert E. Noonan, "A C(Comparison of
the Axiomatic and functional Models, of Structured Programming",
University of “Maryland Computer Science Technical Report TR-630,
February 1972,

(Conwayl Richard (onway, A Primer on Disgiplined Programming,
winthrop Publishers, 1978,

{Goodenoughl John 8, Goodenough and Susan L. Gerhart, “Toward a
Theory of Test Data Selection”, IEEE Transactions on Software
Engineering, vole. SE=1y NOe 2y, Pe 156=-172, June 197S.

(Hansenl G. J. Hansen, G. A. Shoults and J. D, Coinmeat,
*Construction of a3 Transportaole, Multi-Pass Compiler, tor
Extenced Pascal', Proceedings of the SIGPLAN Symposium on Compiler
Construction, SIGPLAN NOTICES vol. 14, noe 8, pe 117-126, August
1977

{Hoare)l €. A. R. roare, "An Axiomatic 3asis for Computer
Projraaming®", CACM, vols. 12y no. 10, pes S76-583, October 1960,

(Popex] Go Jo Popeky Jo Jo HOPAiINngy Be We Lampsony Je G. Mitchell
and R. L. Lonoon, "Notes on the Design of Euclid", Proceedings of
an AC* Conference on Langyuaje Design for Reliadle Software,
SIGPLAN NOTICES vol, 12' noe. 3y Poe 11-13’ March 1977,

Lautlt. we As wulty Re Lo London and ". Shaw, "An Introduction to
the Ccnstruction and Verification of ALPHARD Programs", IEEE
Transactions on Softeare Engineering, vol. 2, Noe &, p, 253-245,
1675,

{letkowitsz al varvin v. [elkowitz, "PLACES: Programming Larjuaje
ancd Construct fvaluation System™, Seventeerth 2nnuel Technical

“esertion Uecranists in e jranming Lanjuajecs
Symposium, National _-ureau of Standards, Gaithersburg
1;75o

{Zetkowitz bl Marvin Vv. Zelkowitz ana Howard

Transactions on Software Engineering, vole 4, noe. 1,
January 197&.

“Implementation ot a Capability 3ased Data Abstraction",

